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Abstract

In this paper we prove a Markov theorem for virtual braids and for
analogs of this structure including flat virtual braids and welded braids.
The virtual braid group is the natural companion to the category of virtual
knots, just as the Artin braid group is the natural companion to classical
knots and links. In this paper we follow L-move methods to prove the
Virtual Markov theorems. One benefit of this approach is a fully local
algebraic formulation of the theorems in each category.
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1 Introduction

In this paper we prove a Markov theorem for the virtual braid group and for
some analogs of this structure. The virtual braid group is the natural companion
to the category of virtual knots, just as the Artin braid group is to classical knots
and links. In classical knot theory the braid group gives a fundamental algebraic
structure associated with knots. The Alexander theorem tells us that every
knot or link can be isotoped to braid form. The capstone of this relationship is
the Markov theorem, giving necessary and sufficient conditions for two braids to
close to the same link (where sameness of two links means that they are ambient
isotopic).

The Markov theorem in classical knot theory is not easy to prove. The
theorem was originally stated by Markov with three moves and then Weinberg
reduced them to the known two moves [29, 38]. The first complete proof is
due to Birman [4]. Other published proofs are due to Bennequin [3], Morton
[30], Traczyk [35] and Lambropoulou [24, 25]. In this paper we shall follow the
“L-Move” methods of Lambropoulou. In the L-move approach to the Markov
theorem, one gives a very simple uniform move that can be applied anywhere
in a braid to produce a braid with the same closure. This move, the L-move,
consists in cutting a strand of the braid and taking the top of the cut to the
bottom of the braid (entirely above or entirely below the braid) and taking
the bottom of the cut to the top of the braid (uniformly above or below in
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correspondence with the choice for the other end of the cut). See Fig. 15 for
an illustration of a classical L-move. One then proves that two braids have the
same closure if and only if they are related by a sequence of L-moves. Once
this L-Move Markov theorem is established, one can reformulate the result in
various ways, including the more algebraic classical Markov theorem that uses
conjugation and stabilization moves to relate braids with equivalent closures.

Up to now [25, 10, 26] the L-moves were only used for proving analogues of
the Markov theorem for classical knots and links in 3—manifolds (with or without
boundary). Our approach to a Markov theorem for virtual knots and links
follows a similar strategy to the classical case, but necessarily must take into
account properties of virtual knots and links that diverge from the classical case.
In particlular, we use L-moves that are purely virtual, as well as considering the
effect of allowed and forbidden moves of the virtual braids. The strategy for our
project is to first give a specific algorithm for converting a virtual link diagram
to a virtual braid. This algorithm is designed to be compatible with the L-
moves. We prove that if two virtual diagrams are related to each other by a
sequence of virtual isotopy moves, then the corresponding braids are related by
virtual L-moves and real conjugation. The exact description of the L-moves for
virtual braids is found in Section 2.2 (Definitions 2, 3, 4 and Figs. 11, 12, 13).

The L-Move Markov theorem for virtual braids is proved in Section 3 (see
Theorem 2). Once the L-Move theorem is proved, it is a natural task to re-
formulate it in algebraic terms. In Section 4 we formulate and prove a local
algebraic Markov theorem for virtual braids (Theorem 3). This and the L-Move
Markov theorem for virtuals are the key results of our paper. In Section 5 we
recover the Markov theorem for virtual braids proved by Kamada in [15]. Such
theorems are important for understanding the structure and classification of
virtual knots and links. The L-move approach provides a flexible conceptual
center from which to deduce many results. In particular, it would surely be
quite difficult to compare our local algebraic formulation of the Markov theo-
rem with that of Kamada without the fundamental L-move context. Our local
algebraic version of the Markov theorem promises to be useful for constructing
new invariants of virtual knots and links.

We conclude the paper with descriptions of variations of our Markov theorem
for other categories of braids, such as flat virtual braids, welded braids and
virtual unrestricted braids, in Section 6 (see Theorems 4, 5, 6, 7, 8). For the case
of welded braids our results coincide with the results of Kamada [15]. Finally,
in Section 7 we describe the general pattern for obtaining quantum invariants
via solutions to the Yang-Baxter equation and Hecke algebra type invariants of
virtual links via braids. These topics will be the subject of our future research.
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2 Virtual Knot Theory

Virtual knot theory is an extension of classical diagrammatic knot theory. In
this extension one adds a virtual crossing (see Fig. 1) that is neither an over-
crossing nor an under-crossing. A virtual crossing is represented by two crossing
arcs with a small circle placed around the crossing point.

Virtual diagrams can be regarded as representatives for oriented Gauss codes
(Gauss diagrams) [18, 9]. Some Gauss codes have planar realizations, and these
correspond to classical knot diagrams. Some codes do not have planar realiza-
tions. An attempt to embed such a code in the plane leads to the production
of virtual crossings.

Another useful topological interpretation for virtual knot theory is in terms
of embeddings of links in thickened surfaces, taken up to addition and sub-
traction of empty handles. Regard each virtual crossing as a shorthand for a
detour of one of the arcs in the crossing through a 1-handle that has been at-
tached to the 2-sphere of the original diagram (see Fig. 1). By interpreting each
virtual crossing in this way, we obtain an embedding of a collection of circles
into a thickened surface of genus the number of virtual crossings in the original
diagram. See [6, 14, 18, 20]. We say that two such surface embeddings are sta-
bly equivalent if one can be obtained from another by isotopy in the thickened
surfaces, homeomorphisms of the surfaces and the addition or subtraction of
empty handles. Then we have the following theorem [20, 6]: Two virtual link
diagrams are isotopic if and only if their correspondent surface embeddings are
stably equivalent.

A third way to make a topological interpretation of virtual knots and links
is to form a ribbon—neighborhood surface (sometimes called an abstract link
diagram [14]) for a given virtual knot or link, as illustrated in Fig. 1. In this
figure we show how a virtual trefoil knot (two classical and one virtual crossing)
has the classical crossings represented as diagrammatic crossings in disks, which
are connected by ribbons, while the virtual crossing is represented by ribbons
that pass over one another without interacting. The abstract link diagram is
shown embedded in three dimensional space, but it is to be regarded without
any particular embedding of the surface. Thus it can be represented with the
ribbons for the virtual crossings switched. These abstract link diagrams give
the least surface embedding (with boundary) that can represent a given virtual
link diagram.

Isotopy moves on virtual diagrams generalize the ordinary Reidemeister
moves for classical knot and link diagrams. See Fig. 2, where all variants
of the moves should be considered. In this work, virtual diagrams are always
oriented, so the isotopy moves will be considered with all possible choices of ori-
entations. One can summarize the moves on virtual diagrams as follows: The
real crossings interact with one another according to the classical Reidemeister
moves (Part A of Fig. 2). Virtual crossings interact with one another by virtual
Reidemeister moves (Part B of Fig. 2). The key move between virtual and
classical crossings is shown in Part C of Fig. 2. Here a consecutive sequence of



VIRTUAL BRAIDS AND THE L-MOVE 4

@
=)

Figure 1: A virtual trefoil and its surface realizations.
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Figure 2: Reidemeister moves for virtuals.
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two virtual crossings can be moved across a single classical crossing. We will call
it a special detour mowve, because it is a special case of the more general detour
move indicated in Fig. 3. All these moves together with the planar isotopy
moves (top left of Fig. 2) generate an equivalence relation in the set of virtual
knot and link diagrams, called virtual equivalence or wvirtual isotopy.

In the detour move, an arc in the diagram that contains a consecutive se-
quence of virtual crossings can be excised, and the arc re-drawn, transversal to
the rest of the diagram (or itself), adding virtual crossings whenever intersec-
tions occur. See Fig. 3. In fact, each of the moves in Parts B and C of Fig.
2 can be regarded as special cases of the detour move. By similar arguments
as in the classical Reidemeister theorem, it follows that any detour move can
be achieved by a finite sequence of local steps, each one being a Reidemeister
move from Part B or C. A succinct description of virtual isotopy is that it is
generated by classical Reidemeister moves and the detour move.
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Figure 3: The detour move.

Figure 4: The forbidden moves.

We note that a move analogous to a special detour move but with two real
crossings and one virtual crossing is a forbidden move in virtual knot theory.
There are two types of forbidden moves: One with an over arc, denoted F1,
and another with an under arc, denoted Fh. See [18] for explanations and
interpretations. Variants of the forbidden moves are illustrated in Fig. 4.

We know [18, 9] that classical knot theory embeds faithfully in virtual knot
theory. That is, if two classical knots are equivalent through moves using virtual
crossings, then they are equivalent as classical knots via standard Reidemeister
moves. With this approach, one can generalize many structures in classical
knot theory to the virtual domain, and use the virtual knots to test the limits of
classical problems, such as the question whether the Jones polynomial detects
knots. Counter—examples to this conjecture exist in the virtual domain. It
is an open problem whether some of these counter—examples are equivalent to
classical knots and links.

3 Virtual Braids

Just as classical knots and links can be represented by the closures of braids,
so can virtual knots and links be represented by the closures of virtual braids
[19, 15, 21]. A wvirtual braid on n strands is a braid on n strands in the classical
sense, which may also contain virtual crossings. The closure of a virtual braid
is formed by joining by simple arcs the corresponding endpoints of the braid on
its plane. Like virtual diagrams, a virtual braid can be embedded in a ribbon
surface. See Fig. 5 for an example.

The set of isotopy classes of virtual braids on n strands forms a group, the
virtual braid group, denoted V B,,, that can be described by generators and
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Figure 5: A virtual braid and its ribbon surface realization.

relations, generalizing the generators and relations of the classical braid group
[19]. This structure of virtual braids is worth study for its own sake. The virtual
braid group is an extension of the classical braid group by the symmetric group.
See [18], [2], [21]. It is worth remarking that classical braids embed in virtual
braids just as classical links embed in virtual links. This fact may be most easily
deduced from [23].

Virtual braids representing isotopic virtual links are related via a Markov—
type virtual analogue. In [15] Kamada proves a Markov theorem for virtual
braids, giving a set of moves on virtual braids that generate the same equivalence
classes as the virtual link types of their closures. For reference to previous work
on virtual links and braids the reader should consult [2, 6, 7, 9, 11, 13, 14, 15,
16, 18, 19, 20, 21, 22, 23, 27, 28, 32, 36, 37].

3.1 Braiding Virtual Diagrams
It is easily seen that the classical Alexander theorem [1, 5] generalizes to virtuals.

Theorem 1. FEvery (oriented) virtual link can be represented by a virtual braid,
whose closure is isotopic to the original link.

Indeed, it is quite easy to braid a virtual diagram. In [21] we gave, for exam-
ple, a new braiding algorithm, which is applicable, in fact, to all the categories
in which braids are constructed. The idea of that algorithm is very similar to
the braiding algorithm of Kamada [15], and it is the following: we consider
a virtual link diagram arranged in general position with respect to the height
function. We then rotate all crossings of the diagram on the plane, so that all
arcs in the crossings are oriented downwards. We leave the down—arcs in place
and eliminate the up—arcs, producing instead braid strands. The elimination of
an up-arc is described in Fig. 9.

For the purposes of this paper, where we need to analyze how the isotopy
moves on diagrams affect the final braids, we follow a different braiding process.
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Figure 6: The swing moves.

Preparation for braiding. Firstly, for simplicity and without loss of general-
ity, virtual link diagrams are assumed piecewise linear. Working in the piecewise
linear category gives rise to another ‘move’: the subdivision of an arc into two
smaller arcs, by marking it with a point. The vertices and the local maxima
and minima are subdividing points of a diagram. Subdivision of an arc with no
crossings can be regarded as a degenerate case of the planar isotopy move.

Furthermore, virtual link diagrams lie on the plane, which is equipped with
the top-to-bottom direction. This makes our set-up liable to certain conventions.
For example, an oriented virtual diagram contains only up—arcs and down—arcs
(no horizontal arcs). It contains no horizontally aligned crossings, so as to have
the crossings in the corresponding braid lying on different horizontal levels.
Vertically aligned crossings or subdividing points are also not permitted, so as
to avoid triple points when creating new strands or pairs of braid strands with
the same endpoints. The above discussion gives rise to the following definition.

Definition 1. A virtual link diagram is said to be in general position if it does
not contain any horizontal arcs and no two subdividing points or crossings are
vertically or horizontally aligned, nor is a crossing coincident with a maximum
or a minimum.

Clearly, any virtual diagram can assume general position by very small pla-
nar shifts. Note that, the arcs or points or crossings that violate Definition 1
may not be close in the diagram. For example, two aligned subdividing points
may lie far away. The point is that the correcting shifts can be applied on
only one of them, so, in this sense these shifts can be assumed local. Moreover,
when bringing a virtual diagram to general position we meet certain choices.
For example, in a parallel occurence of a maximum and a minimum, either one
can occur first in the vertical order. Different choices amount to local shifts of
crossings and subdividing points with respect to the horizontal or the vertical
direction. These local shifts shall be called direction sensitive moves.

The most interesting instances of such moves are the swing moves. See Fig.
6. A swing move avoids the coincidence of a maximum or minimum and a
crossing, real or virtual. It turns out that adding the swing moves to our list of
virtual isotopy moves makes redundant certain instances of Reidemeister moves
involving horizontal arcs. For example, it is easily verified that an RII move
with two horizontal arcs can be produced by an RII move with two vertical
arcs, two swing moves and changes of relative positions of vertices.

It follows now easily that any two virtual diagrams in general position that
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correspond to isotopic virtual diagrams will differ by the above direction sen-
sitive moves and the Reidemeister moves for virtuals, all in general position.
From now on, all diagrams will be assumed in general position.

The braiding. We are now ready to describe our braiding algorithm. The
down—arcs will stay in place while the up—arcs shall be eliminated. Now, an up-
arc will either be an arc of a crossing or it will be a “free up-arc”. We place each
crossing containing one or two up—arcs in a small rectangular box with diagonals
the arcs of the crossing, the crossing bozx. A crossing box is assumed sufficiently
narrow, so that the vertical zone it defines does not intersect the zone of another
crossing. The free up—arcs are arcs joining the crossing boxes. We first braid
the crossings containing an up-arc, one by one, according to the crossing charts
of Fig. 7. Except for the local crossings shown in the illustrations, all other
crossings of the new braid strands with the rest of the diagram are virtual.
This is indicated abstractly by placing virtual crossings at the ends of the new
strands. The result is a virtual tangle diagram.

It is easy to verify that closing the corresponding braid strands of a braided
crossing results in a virtual tangle diagram isotopic to the starting one. In Fig.
8 we illustrate this isotopy for one of the less obvious cases.

It remains to braid the free up—arcs. We braid a free up-arc by sliding it first
across the right-angled triangle with hypotenuse the up-arc and with the right
angle lying below it, so that it crosses virtually any other arcs of the original
diagram that intersect the sliding triangle. A grey curved arc is illustrated to
this effect in Fig. 9. We then cut the vertical segment at a point and we pull
the two ends, the upper upward and the lower downward, so that the horizontal
arc slopes slightly downwards, keeping them aligned, so that the two new braid
strands cross any other part of the diagram only virtually. This is indicated in
the illustrations by the virtual crossings on the final braid strands. We also care
that the horizontal arc slopes slightly downwards, so that there is no conflict with
not permitting horizontal arcs in Definition 1. Note that the prior elimination
of crossings may cause vertical strands to cross virtually the free up-arc. This
is not an obstacle for braiding it, since —by the detour move— the arc can slide
virtually across these strands (see grey strands in Fig. 9).

In the end we created a pair of corresponding braid strands and we have
one up-arc less. Note that joining the two corresponding braid strands yields
a virtual tangle diagram obviously isotopic to the starting one, since from the
free up-arc we created a stretched loop around the braid axis, which is detour
isotopic to the arc. The braiding of a free up-arc is a basic braiding move.

After completing all braidings we obtain an open virtual braid, the closure
of which is an oriented virtual link diagram isotopic to the original one. The
braiding algorithm given above will braid any virtual diagram and, thus, it
proves Theorem 1. O

Remark 1. Because of the narrow zone condition for the crossings (see the
beginning of the braiding discussion) the braidings of the crossings are indepen-
dent, so their order is irrelevant. Moreover, because of the braid detour move,
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Figure 10: An example of braiding.

it does not make any difference in which order we braid the free up—arcs. In
fact, we could even braid any number of them before completing the braidings
of the crossings.

Remark 2. The braidings of the crossings are also based on the basic braiding
move. Using this, it is easy to verify that, if in the instances of the braiding chart
we replace each arc by a number of parallel arcs with the same orientation and
the same crossings, the resulting braids are L-equivalent to the ones we would
obtain if we braid one by one the single crossings in the formation, according
to the chart. This remark can save us from creating unnecessary extra braid
strands.

The set-up of our virtual braiding resembles the one in [25] for classical links,
but only to the extent that we consider piecewise linear diagrams on the plane,
which is equipped with the top-to-bottom direction, and that the basic braiding
move looks similar. With the forbidden moves in the theory, the choices needed
here are completely different from the ones made in the classical set-up. For
example, we are forced to braid a crossing of two up—arcs as one entity, not its
arcs one by one. (Braiding crossings as rigid entities can, obviously, be applied
also in the classical set-up for braiding knots and links.) In the classical set-up,
braiding an over up-arc corresponds to pulling the new pair of braid strands over
the rest of the diagram. Here it has to be always virtually. Another technical
difference is that, in the classical set-up it was important to ensure that the
sliding triangles have no intersections with other parts of the diagram. Here
this assumption is not needed.

3.2 The L-equivalence for Virtual Braids

As in classical knot theory, the next consideration after the braiding is to char-
acterize virtual braids that induce, via closure, isotopic virtual links. In this
section we describe an equivalence relation between virtual braids, the L,-
equivalence. For this purpose we need to recall and generalize to the virtual
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setting the L-moves between braids to wirtual L-mowves, abbreviated to L,-
moves. The L-move (see Definition 5) was introduced in [24, 25], where it was
used among other things to prove the ‘one-move Markov theorem’ for classical
oriented links (cf. [25], Theorem 2.3), replacing the two well-known moves of the
Markov equivalence: the stabilization that introduces a crossing at the bottom
right of a braid and conjugation that conjugates a braid by a crossing.

Definition 2. A basic L,-move on a virtual braid, consists in cutting an arc of
the braid open and pulling the upper cutpoint downward and the lower upward,
so as to create a new pair of braid strands with corresponding endpoints (on the
vertical line of the cutpoint), and such that both strands cross entirely virtually
with the rest of the braid. (In abstract illustrations this is indicated by placing
virtual crossings on the border of the braid box.)

By a small braid isotopy that does not change the relative positions of end-
points, a basic L,-move can be equivalently seen as introducing an in-box virtual
crossing to a virtual braid, which faces either the right or the left side of the
braid. If we want to emphasize the existence of the virtual crossing, we will
say wvirtual L,-move, abbreviated to vL,-move. In Fig. 11 we give abstract
illustrations. See also Fig. 16 for a concrete example.

Note that in the closure of a basic L,-move or a vL,-move the detoured loop
contracts to a kink. This kink could also be created by a real crossing, positive
or negative. So we define:

Definition 3. A real L,-move, abbreviated to +L,-move or —L,-move, is a
virtual L-move that introduces a real in-box crossing (positive or negative) on
a virtual braid, and it can face either the right or the left side of the braid. See
Fig. 12 for abstract illustrations.

If the crossing of the kink is virtual, then, in the presence of the forbidden
moves, there is another possibility for an L,-move on the braid level. Namely,
we have:

Definition 4. A threaded L,-move on a virtual braid is a virtual L-move with
a virtual crossing in which, before pulling open the little up-arc of the kink, we
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perform a Reidemeister II move with real crossings, using another arc of the
braid, the thread. See Fig. 13. There are two possibilities: an over-threaded
L,-move and an under-threaded L,-move, depending on whether we pull the
kink over or under the thread, both with the variants right and left.

Note that a threaded L,-move cannot be simplified in the braid. If the
crossing of the kink were real, then, using a braid RIII move with the thread,
the move would reduce to a real L,-move. Similarly, if the forbidden moves
were allowed, a threaded L,-move would reduce to a vL,-move.

Remark 3. As with a braiding move, the effect of a virtual L-move, basic, real
or threaded, is to stretch (and cut open) an arc of the braid around the braid
axis using the detour move, after twisting it and possibly after threading it.
Conversely, such a move between virtual braids gives rise to isotopic closures,
since the virtual L-moves shrink locally to kinks (grey diagrams in Figs. 12 and
13).

Conceivably, the ‘threading’ of a virtual L-move could involve a sequence
of threads and Reidemeister II moves with over, under or virtual crossings,
as Fig. 14 suggests. The presence of the forbidden moves does not allow for
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simplifications on the braid level. We show later that such multi-threaded L, -
mowves follow from the threaded L,-moves, up to real conjugation.

We finally introduce the notion of a classical L-move, adapted to our set-up.

Definition 5. A classical Lyyer-move resp. Lypger-move on a virtual braid
consists in cutting an arc of the virtual braid open and pulling the two ends, so as
to create a new pair of braid strands, which run both entirely over resp. entirely
under the rest of the braid, and such that the closures of the virtual braids before
and after the move are isotopic. See Fig. 15 for abstract illustrations. A classical
L-move (over or under) may also introduce an in-box crossing, which may be
positive, negative or virtual, or it may even involve a thread.

In order that a classical L-move between virtual braids is allowed, in the
sense that it gives rise to isotopic virtual links upon closure, it is required that
the virtual braid has no virtual crossings on the entire vertical zone either to
the left or to the right of the new strands of the L-move. We then perform the
isotopy on the side with no virtual crossings. We show later that the allowed
L-moves can be expressed in terms of L,-moves and real conjugation. It was
the classical L-moves that were introduced in [24, 25], and they replaced the
two equivalence moves of the classical Markov theorem. Clearly, in the classical
set-up these moves are always allowed, while the presence of forbidden moves
can preclude them in the virtual setting.

In Fig. 16 we illustrate an example of various types of L-moves taking place
at the same point of a virtual braid.

4 The L-move Markov Theorem for Virtual Braids

It is clear that different choices when applying the braiding algorithm as well
as local isotopy changes on the diagram level may result in different virtual
braids. In this section we show that real conjugation (that is, conjugation by a
real crossing) and some variations of the L,-moves (recall Definitions 2, 3, 4)
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capture and reflect on the braid level all instances of isotopy between virtual
links.

Theorem 2 (L-move Markov theorem for virtuals). Two oriented vir-
tual links are isotopic if and only if any two corresponding virtual braids differ
by wvirtual braid isotopy and a finite sequence of the following moves or their
tnverses:

(i) Real conjugation.
(i) Right virtual L,-mowves.
(i1i) Right real L,-moves.
(iv) Right and left under-threaded L,-moves.

Definition 6. Moves (i)—(iv) together with virtual braid isotopy generate an
equivalence relation in the set of virtual braids, the L-equivalence.

Note that in the statement of Theorem 2 we do not use virtual conjugation,
basic L,-moves, left virtual or real L,-moves, allowed classical L-moves, over-
threaded L,-moves (right or left) and multi-threaded L,-moves. In the next
lemmas we show that all these moves (except for the left real L,-moves) follow
from the L-equivalence. We shall then use them freely in the proof of Theorem 2.
The proof that left real L,-moves follow from the L-equivalence shall be given
at the end of the proof of the theorem (Lemma 9).

Lemma 1. Virtual conjugation can be realized by a sequence of basic and
virtual L,-moves.

Proof. The proof is an adaptation for virtual conjugation of a similar proof of
R. Haring-Oldenburg for classical braids and real conjugation [10]. In Fig. 17 we
start with a virtual braid conjugated by a virtual crossing. After performing an
appropriate basic L,-move and braid isotopy, and after undoing another virtual
L,-move we end up with the original braid. O

Note that the ‘trick’ of Fig. 17 would not work in the case of real conjugation.
In fact, we conjecture that real conjugation cannot be generated by virtual L-
moves.

Lemma 2. Basic and left virtual L,-moves follow from right virtual L. -moves
and braid isotopy.

Proof. The proof is illustrated in Fig. 18. O

It is easy to see that an allowed classical L-move reduces, up to real conjuga-
tion and classical braid relations, to a right or left real L,-move at the extreme
right or left of the braid box. See the discussion after Remark 7.
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We shall now prove a key lemma about ‘in-box exchange moves’.

Definition 7. An in-box exchange move is a move between virtual braids as
illustrated in Fig. 19 between the first two or the last two pictures, together
with the two variants with facing the left (obtained by reflecting the diagrams
in a vertical axis).

Lemma 3. The in-box exchange moves follow from L,-moves and real conju-
gation.

Proof. The proof is illustrated in Fig. 20 for one variant of the in-box exchange
moves. For the second step we point out that the real conjugation we do here
can be carried out just above and below the middle box, for the following reason:
since the ith and (¢4 1)st strands cross the top and bottom braid boxes virtually,
any crossing in their vertical zone can be braid detoured away. So, this vertical
zone will only contain parts of other strands (drawn in grey), crossing the ith
and (i + 1)st strand virtually. Then, the real crossing formed by these two
strands can be braid detoured to the top, get real conjugated to the bottom
and then pass in the same manner to the region above the bottom box. O

The next lemma shows that in the L-equivalence we only need, indeed,
one type of threaded L,-moves, say the under-threaded (left and right), recall
Fig. 13.

Lemma 4. The over-threaded L,-moves follow from the L-equivalence moves
of Definition 6.

Proof. Lemma 3 is the key. Indeed, as illustrated in Fig. 21, a right over-
threaded L,-move gives rise to an in-box exchange move of the same type as
the one in Fig. 20. So, applying Lemma 3 involves only L-equivalence moves.
Similarly, the in-box exchange move facing the left (with a top negative real
crossing) involves only a virtual L,-move and a left under-threaded L,-move.
Thus, a left over-threaded L,-move follows also from L-equivalence moves. [

As a result of Lemmas 3 and 4 and their proofs we have the following.

Corollary 1. The in-box exchange moves follow from the L-equivalence mowves.
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Proof. Indeed, when in the proof of Lemma 3 we reach an over-threaded L,,-
move, we apply the process in Fig. 20 with just one virtual crossing in the middle
box. O

Lemma 5. The multi-threaded L.,-moves are consequences of the L-equivalence
moves.

Proof. Notice first that all threads can be assumed real, as virtual threads can
be braid-detoured away around the virtual crossing of the move. In Fig. 22 we
illustrate the last step of the proof. We assume any number of real threads inside
the middle braid box, instead of just one illustrated here. Then, by Lemma 3
we exchange the two real crossings of the outer thread with two virtual ones
and we braid—detour away the virtual thread. We proceed like this until we are
left with one real thread. If in the application of Lemma 3 or in the last step
an over-threaded L,-move is created, apply Lemma 4 and Corollary 1. O

Remark 4. The in-box exchange moves of Definition 7 generalize the virtual
exchange moves defined by Kamada in [15], which he used in formulating and
proving a Markov type theorem for virtual braids. See Section 5 for details.

Proof of Theorem 2. Clearly, L-equivalent braids have isotopic closures. We
have to show the converse.

The proof splits into two parts: the technical part and the isotopy part. In
the technical part we compare virtual braids resulting from different choices
made on a given virtual diagram during the braiding process. The isotopy part
consists in comparing virtual braids corresponding to virtual diagrams that are
related either by different choices made when bringing a diagram to general
position (recall Definition 1) or by the virtual isotopy moves.

We first discuss the technical part. Since our braiding is quite rigid, the
only choices made during the braiding process are the subdividing points and
the order of the braiding moves. The order of the braiding moves is irrelevant,
according to Remark 1. Subdividing points are needed for marking the up—arcs
and the crossing boxes. Assume now that our diagram is equipped with a choice
of subdividing points. In order to compare it to a different choice of subdividing
points we need the following lemma.
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Lemma 6. If we add to an up-arc an extra subdividing point, the corresponding
braids differ by basic L,-moves.

Proof. Assume first that the up-arc is a free up-arc. Without loss of generality
we have eliminated all other free up—arcs and crossings containing up—arcs of
the diagram except for the up-arc in question and its subdivided replacement.
We complete the braiding by eliminating the up-arc. In Fig. 23 we let P be
the new subdividing point of the up-arc and P’ its projection on the horizontal
arc (slightly sloping downwards) created by the braiding. We perform a basic
L,-move at P’ and, by a small braid planar isotopy, we obtain the braid that
would result from the original diagram with the subdividing point P included.

If, now, the up-arc is an arc inside a crossing box, then we create a sim-
ilar smaller box inside the original, using the new subdividing point, and we
complete the braiding of the new formation. Again, we will find that the cor-
responding braids differ by two or four basic L,-moves, depending on whether
the crossing contains one or two up—arcs. O

Corollary 2. Given any two subdivisions S1 and So of a virtual diagram, the
corresponding braids are L-equivalent.

Indeed, consider the subdivision Sy |JS2, which is a common refinement of Sy
and S5, and apply repeatedly Lemma 6 to S7 and to Ss.

We proceed now with the isotopy part of the proof of Theorem 2. The choices
we have when bringing a virtual diagram to general position are related to the
direction sensitive moves (recall discussion after Definition 1). These, as well as
the virtual isotopy moves, are all local. Thus, given two virtual diagrams that
differ by such a move, we may assume that both have been braided everywhere,
except for the arcs and crossings inside the regions of the local move. After
completing the braiding, we compare two virtual braids, which are identical
except for the effect of the move on each. In the figures that follow we focus
only on the local moves and their braidings, dropping the abstract box.

Lemma 7. Virtual diagrams in general position that differ by direction sensitive
moves correspond to virtual braids that differ by basic and virtual L,-moves.

Proof. Repairing a horizontal arc corresponds to a planar isotopy move. If the
arc in the move is an up-arc, the move boils down to subdivision of an up-arc
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Figure 25: An instance of vertical alignment.

(Lemma 6), basically because subdivision can be seen as a degenerate case of
planar isotopy. (We refer the reader to [25] for details.) In Fig. 24 we check
planar isotopy in the case of a down—arc.

Changes of relative heights of crossings or subdividing points yield — up to
virtual braid relations — the same virtual braids. Also, vertical alignment of
crossings or subdividing points can be repaired by local sidewise shifts. In Fig.
25 we illustrate a case of vertical alignment of two subdividing points and its
braided resolutions. We only show the two up—arcs containing the subdividing
points (everything else is already braided), the alignment of which is indicated by
a dotted line. Note that, up to a braid vRII move, the two braids are conjugates
by a virtual crossing. All other cases of vertical alignment are based on the same
idea, possibly involving conjugation by more than one virtual crossing.

We shall now check the swing moves. There are various cases, depending
on the orientation, the type of crossing and the minimum/maximum. The ones
with a virtual crossing are very easy to check. In Figs. 26 and 27 we check two
cases with a real crossing.

In many parts of Fig. 27 we have drawn in grey the continuation of an arc.
In the last instance this is needed for comparing the final braids of the two sides
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of the move. The key point here is that this grey arc is part of the braiding
of an up-arc, so its crossing with our braid diagram will be virtual. Recall our
assumption, that in the regions of the local moves there are no other crossings
of the original diagram. Note, finally, that if this continuation arc was pointing
to the left, so it would be in both sides of the move and, again, the two final
braids would agree. O

We shall now check the virtual isotopy moves. Indeed we have:

Lemma 8. Virtual diagrams that differ by virtual isotopy moves correspond to
virtual braids that differ by braid isotopy, L,-moves and real conjugation.

Proof. We only have to check the moves that involve up-arcs, as the others
follow by virtual braid isotopy. We discuss first the RII moves. From all cases of
RII moves (with virtual/real crossings, different orientations) the vertical ones
checked in Figs. 28 and 29 are the most interesting ones. For example, an RII
move placed horizontally follows from two swing moves and a vertical RII move.
In Fig. 28 we check a reverse real RII move. Note here that a threaded L,-move
is involved. If this were an over-threaded L,-move, we could apply Lemma 4 in
order to use only an under-threaded one.

In Fig. 29 we check a real RII move with two up-arcs. Here it is real
conjugation that will play the main role. Again, the braiding has been done
for the rest of the diagram, and parts of it are indicated in grey. The braiding
algorithm ensures that there are no other real crossings in the final braid lying in

vLy
-—>

%
i
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Figure 28: The first case of an RII move.

the narrow vertical zone, which is created after the completion of the braiding.
So, apart from the real crossings indicated, all other crossings in this vertical
zone will be virtual (drawn in grey), created by the new braid strands. As in the
proof of Lemma 3, this means that the old strands act as channels for the real
crossings to reach the top and the bottom of the braid, hence to be available
for conjugation.

We shall now check the RIII type moves. These include the classical RIII
moves, the virtual RIII moves and the special detour moves. Consider an RIII
move with one up-arc and two down-arcs. Using a well-known trick we can
perform the move using RIT moves (which are already checked) and an RIII
move with three down—arcs. See Fig. 30. The same trick applies to virtual and
special detour moves, but in some cases of special detour moves we may have to
also use the swing moves. In Fig. 31 we demonstrate the most interesting case.
Finally, if an RIII type move involves two up—arcs and one down—arc we apply
the same trick to reduce to the case of one up-arc. Similarly, an RIII type move
with three up—arcs reduces to the previous cases. O

We shall finally check the RI type moves. Virtual RI moves on the diagram
clearly give rise to vL,-moves on the braid level. Braiding a real RI move with
downward orientations on the crossing will clearly give rise to a right real L,-
move, if the kink faces the right, and to a left real L,-move, if the kink faces
the left. Braiding a real RI move with upward orientations on the crossing will
give rise to a right real L,-move, if the kink faces the left (see Fig. 32), and to
a left real L,-move, if the kink faces the right. O

Lemma 9 below completes the proof that all L,-moves follow from L-equivalence
moves.

Lemma 9. A left real L,-move can be performed by a sequence of L-equivalence
moves. Consequently, an RI move giving rise to a left real L,-move corresponds
to a sequence of L-equivalence moves.

Proof. For the proof we employ the Whitney trick (compare [15]). In Fig. 33
we start with a virtual diagram K3, which is almost the closure of a braid B,
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VIRTUAL BRAIDS AND THE L-MOVE 26

braiding right real braiding
\ —> <> <—
Ly

Figure 32: An RI move giving rise to a right real L,-move.

except that it contains a kink with a real crossing introduced in B. So, K7 opens
to a virtual braid B;, which contains a left real L,-move. On K; we introduce
a second kink and we perform a sequence of isotopy moves that undo the kink
we started with. At the same time we register at each step the difference that
every isotopy move makes on the braid level. The final diagram Ky is, then,
the closure of the starting braid B. So, we went from Bj, containing a left real
L,-move, to B with the L,-move removed, via a sequence of L-equivalent braids

(Definition 6). O
By Lemmas 1, 2, 4, 7, 8, 9 and by Corollaries 2 and 3 the proof of Theorem
2 is now concluded. (]

Remark 5. As far as the proof of Theorem 2 is concerned, the reverse real RII
isotopy moves are the only cases where the threaded L,-moves appear on the
braid level. Moreover, real conjugation is needed in the proof of Lemmas 3 and
4 and in a real RII move with two up—arcs. Finally, the real L,-moves appear
only in the real RI cases.

Conjecture 1. Real conjugation is not a consequence of the L, -moves. In other
words, it should be possible to construct a virtual braid invariant that will not
distinguish L,-move equivalent virtual braids, but will distinguish virtual braids
that differ by real conjugation. As the simplest possible puzzle, try to show that
there is no sequence of L,-moves connecting the pair of equivalent braids shown
in Fig. 34.

5 Algebraic Markov Equivalence for Virtual Braids

In this section we reformulate and sharpen the statement of Theorem 2 by giving
an equivalent list of local algebraic moves in the virtual braid groups. More
precisely, let V' B,, denote the virtual braid group on n strands and let o;,v; be
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Figure 35: The moves (ii)—(iv) of Theorem 3.

its generating classical and virtual crossings. The o;’s satisfy the relations of
the classical braid group and the v;’s satisfy the relations of the permutation
group. The characteristic relation in V B,, is the special detour move relating
both:

Vi0i41V; = Ui4104Vi41-

The group V B,, embedds naturally into V B, 1 by adding one identity strand
at the right of the braid. So, it makes sense to define VB :=J,—, V By, the
disjoint union of all virtual braid groups. We can now state our result.

Theorem 3 (Algebraic Markov theorem for virtuals). Two oriented vir-
tual links are isotopic if and only if any two corresponding virtual braids differ
by a finite sequence of braid relations in V By and the following moves or their
muverses:

(i) Virtual and real conjugation: viaw; ~ o~ o; tao;.

(i) Right virtual and real stabilization: v, ~a ~ aoil.

(iii) Algebraic right under—threading: o ~ ao;, *v, 10"
(iv) Algebraic left under—threading: o~ avnvn,laiilvnarilvn,lvn,

where o, v;,0; € VB, and vy,,0, € VByi1 (see Fig. 35).

Remark 6. Given b in VB, let i(b) denote the element of VB, obtained
by adding one to the index of every generating element in b (compare [15]). In
other words, i(b) is obtained by adding a single identity strand to the left of b.
We also regard b as an element of V B,,;1 by adding a strand on the right, but
take this inclusion for granted, with no extra notation. In the above notation,
a left under-threaded L,-move pulled to the bottom left side of the braid will

have the algebraic expression: a ~ i(a)oi veof" (see Fig. 36).

Proof of Theorem 3. The algebraic moves of Theorem 3 follow immediately
from the moves of Theorem 2 by braid detouring to the right and by conjugation
in V By,. For example, in Fig. 37 we illustrate how to bring a right real L,-move

a ~ a ~
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Figure 37: Right real L,-move derived from right stabilization.

to the right end of the braid. In order to derive the algebraic left under-threaded
moves: we first bring a left under-threaded L,-move to the bottom left of the
braid by conjugation, and then we braid detour to the right and apply virtual
conjugation. O

Remark 7. By the braid conjugation, moves (ii), (iii), (iv) of Theorem 3 could
be equally given with the local algebraic part in between two braids. For exam-
ple:

af ~ao; v, 1o p.

Finally, we should point out that the proof in Fig. 37 can be also adapted
to the case of allowed classical L-moves, namely pulling to the right or left,
depending on which side is free of virtual crossings. Here, the conjugation for
pulling aside is real and agrees with the type (over/under) of the classical L-
move. Once out of the braid box, we have a real stabilization move.

6 Kamada’s Markov Theorem for Virtual Braids

In this section we present Kamada’s Markov theorem for virtual braids [15] and
we show that our Theorem 3 is equivalent to the theorem of Kamada. With the
inclusion of braids of Remark 6, Kamada proved the following:

Theorem (Kamada [15]) Two virtual braids b and b’ have isotopic closures
if and only if they are related to one another through a finite sequence of braid
relations in V By, and the following moves:
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1. conjugation if b’ is the conjugation of b € VB, by an element of VB,,.
2. right stabilization move if b’ is bo,, orbo,* orbv, € VB,yi1, forb € VB,,.

3. right exchange move if they belong to one of the following patterns, for
bi,by € VB,
{blo';leO'n, bl’l}nbg’l}n }

4. left exchange move if they belong to one of the following patterns, for
bi,by € VB,
{i(bl)O'l_li(bg)O'l, i(b1)1]1i(b2)1)1 }

In Fig. 38 we illustrate the braids for the right and left exchange moves. It
is clear from the figure that the corresponding braids for these moves have
equivalent closures.

Proposition 1. The moves of the Kamada theorem follow from the moves of
Theorem 3. Conversely, the moves of Theorem & can be realized via the moves
of Kamada.

Proof. The first two moves coincide with moves (i) and (ii) of Theorem 3.
Further, Kamada’s exchange moves are special cases of in-box exchange moves
(recall Definition 7), so, by Lemma 3 and by Theorems 2 and 3, they follow
from the moves of Theorem 3.

Consider now an algebraic right under-threaded move. The one side of the
move is a special case of one side of the exchange move, where the second
braid box contains only the virtual crossing v,_1. Perform the exchange move
to change the thread to a virtual one. Braid detour it away and apply the
right virtual stabilization. This brings us to the other side of the threaded
move. Finally, note that Kamada’s left exchange move is equivalent, up to
conjugation, to a similar left exchange move with the opposite crossings. Let
us call that one an ‘under left exchange move’. For realizing an algebraic left
under-threaded move: conjugate it first to the bottom left of the braid (as in
Fig. 36) and realize this move via an under left exchange move. Then conjugate
the result back to the bottom right of the braid. O
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7 The Markov Theorem for Flat Virtuals and
Welded Links

In this section we give the analogs of Theorems 2 and 3 for flat virtuals, welded
links and virtual unrestricted links. Each category is interesting on its own right
and has been studied by various authors. In [21] we gave reduced presentations
for the corresponding braid groups.

7.1 Flat Virtuals

Every classical knot or link diagram can be regarded as an immersion of cirlces
in the plane with extra under/over structure at the double points. If we take
the diagram without this extra structure, it is the shadow of some link in three
dimensional space, but the weaving of that link is not specified. We call these
shadow crossings flat crossings. Clearly, if one is allowed to apply the Reide-
meister moves to a shadow diagram (without regard to the types of crossings)
then the diagram can be reduced to a disjoint union of circles. This reduction
is no longer true in the presence of virtual crossings.

More precisely, let a flat virtual diagram be a diagram with flat crossings and
virtual crossings. Two flat virtual diagrams are equivalent if there is a sequence
of flat virtual Reidemeister moves taking one to the other. These are moves as
shown in Fig. 2, but with flat crossings in place of classical crossings. Note
that in the category of flat virtuals there is only one forbidden move. Detour
moves as in Fig. 2(C) are available only for virtual crossings with respect to
flat crossings and not the other way around. The study of flat virtual knots
and links was initiated in [18]. The category of flat virtual knots is identical in
structure to what are called virtual strings by Turaev in [36].

Fig. 39 illustrates flat virtual links H and L and a flat virtual knot D. The
link H cannot be undone in the flat category because it has an odd number
of virtual crossings between its two components and each flat virtual Reide-
meister move preserves the parity of the number of virtual crossings between
components. The diagram D is shown to be a non-trivial flat virtual knot using
the filamentation invariant, see [11]. The diagram L is also a non-trivial flat
diagram. Note that it comes apart at once if we allow the forbidden move.
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Just as virtual knots and links can be interpreted via stabilized embeddings
of curves in thickened surfaces, flat virtuals can be interpreted as stabilized im-
mersions of curves in surfaces (no thickening required). See [13] for applications
of this point of view. Similarly, flat virtual links and braids have ribbon surface
interpretations. In Fig. 40 we illustrate the flat special detour move and its local
ribbon surface embedding. Note the stark difference here between the virtual
crossing structure and the immersion structure of the flat crossings.

We shall say that a virtual diagram owverlies a flat diagram if the virtual
diagram is obtained from the flat diagram by choosing a crossing type for each
flat crossing in the virtual diagram. To each virtual diagram K there is an
associated flat diagram F'(K) that is obtained by forgetting the extra structure
at the classical crossings in K. Note that if K is equivalent to K’ as virtual
diagrams, then F(K) is equivalent to F(K’) as flat virtual diagrams. Thus, if
we can show that F(K) is not reducible to a disjoint union of circles, then it
will follow that K is a non-trivial virtual link.

The flat virtual braids were introduced in [19]. As with the virtual braids,
the set of flat virtual braids on n strands forms a group, the flat virtual braid
group, denoted F'V,,. The generators of F'V,, are the virtual crossings v; and
the flat crossings c;, such that ¢? = 1. Both, flat crossings and virtual crossings
represent geometrically the generators of the symmetric group .S,,. But the mized
relation between them:

ViCi41V; = Vi41CiVi41

is not symmetric (see Fig. 40). FV, is a quotient of the virtual braid group
V B,, modulo the relations ¢;2 = 1 for all . Thus, F'V,, is the free product of
two copies of S, modulo the set of mixed relations. Note that FV5 = S5 * Sy
(no extra relations), and it is infinite.

From the above, the flat virtual braids are the appropriate theory of braids
for the category of virtual strings. Every virtual string is the closure of a flat
virtual braid. In order to obtain a Markov theorem for flat virtual braids, we
only need to forget, in our study of virtuals and the definitions of the virtual
L-moves, the distinction between over and under crossings. The presence of the
flat forbidden move gives rise to the flat threaded L. -moves, left and right, the
analogues of the threaded L,-moves. Figs. 11, 12 and 13 provide illustrations,



VIRTUAL BRAIDS AND THE L-MOVE 33

if we substitute the real crossings by flat ones. Thus, we have the following
results.

Theorem 4 (L-move Markov theorem for flat virtuals). Two oriented
flat virtual links are isotopic if and only if any two corresponding flat virtual
braids differ by flat virtual braid isotopy and a finite sequence of the following
moves or their inverses:

(i) Flat conjugation.
(ii) Right virtual L,-moves.
(iii) Right flat L,-moves.
(iv) Right and left flat threaded L, -moves.

Theorem 5 (Algebraic Markov theorem for flat virtuals). Two oriented
flat virtual links are isotopic if and only if any two corresponding flat virtual
braids differ by braid relations in FVy, and a finite sequence of the following
moves or their inverses:

(i) Virtual and flat conjugation: V;QU; ~ O~ GO .
(i) Right virtual and flat stabilization: av, ~ a ~ acy,.
(iii) Algebraic right flat threading: Q ~ QCpUp_1Cp-
(iv) Algebraic left flat threading: O~ QUpVUp—_1Cn—1VUnCpn—1Un_1Un.

where a,v;,¢; € FV,, and vy, ¢, € FV,y1. (Fig. 35 provides illustrations, sub-
stituting the real crossings by flat ones).

7.2 Welded Links and Unrestricted Virtuals

Welded braids were introduced in [8]. They satisfy the same isotopy relations
as the virtuals, but for welded braids one of the two forbidden moves of Fig. 4
is allowed, the move Fj, which contains an over arc and one virtual crossing.
One can consider welded knots and links as closures of welded braids. The move
F1 can be regarded as a way of detouring sequences of classical crossings over
welded crossings. The explanation for the choice of moves lies in the fact that
the move F} preserves the combinatorial fundamental group. This is not true
for the other forbidden move Fy. The welded braid group on n strands, W B,,,
is a quotient of the virtual braid group, so it can be presented with the same
generators and relations as V B,,, but with the extra relations:

V0410 = 0110041 (F1).

In order to obtain a Markov type theorem for welded braids, we only need
to consider in our study of virtuals the effect of the move F;. The presence of
this move makes redundant the under-threaded L,-moves since, by the move
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F1, the thread can be pulled away, reducing the move to a basic vL,-move.
Thus, threading disappears from the theory of welded braids and we have the
following results (compare [15]).

Theorem 6 (L-move Markov theorem for welded knots). Two oriented
welded links are isotopic if and only if any two corresponding welded braids
differ by welded braid isotopy and a finite sequence of the following moves or
their inverses:

(i) Real conjugation.
(i) Right virtual L,-moves.
(i1i) Right real L,-moves.

Theorem 7 (Algebraic Markov theorem for welded knots). Two oriented
welded links are isotopic if and only if any two corresponding virtual braids differ
by braid relations in W Bo, and a finite sequence of the following moves or their
tnverses:

(i) Virtual and real conjugation: viav; ~ a ~ o; tao;.

+1

n 7

(i) Right virtual and real stabilization: «v, ~ o ~ ao

where o, v;, 0, € WBy, and vy, 0, € WBy41 (recall Fig. 35 for illustrations).

This statement of the Markov theorem for welded braids is equivalent to
that of Kamada [15].

Finally, another quotient of the virtual braid group (and of the welded braid
group) is obtained by adding both types of forbidden moves. We call this the
unrestricted virtual braid group, denoted UB,,. It is known that any classical
knot can be unknotted in the virtual category if we allow both forbidden moves
[17, 31]. Nevertheless, linking phenomena still remain. The unrestricted virtual
braid group itself is non trivial, deserving further study. For a presentation of
UB,, we just add to the presentation of V B,, both types of forbidden moves:

0;0i 410 = 0ip100i41 (F1)  and 00410 = vig10i05401 (Fb).
Then we have the following:

Theorem 8 (Algebraic Markov theorem for unrestricted virtuals). Two
oriented unrestricted virtual links are isotopic if and only if any two correspond-
ing unrestricted virtual braids differ by braid relations in UBo. and a finite
sequence of the following moves or their inverses:

(i) Virtual and real conjugation: viav; ~ a ~ o; tao;.

+1

n

(i) Right virtual and real stabilization: «v, ~ o ~ ao
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where a,v;,0; € UBy, and vy,0, € UB, 1.

Note that the moves of the equivalence relations in Theorems 7 and 8 are
apparently the same. The difference in the theory lies in the different structures
of the corresponding braid groups.

8 On Virtual R—matrices and Virtual Hecke Al-
gebras

In this section we illustrate relations on an R-matrix solution to the Yang-
Baxter equation that would allow an analog of the Markov trace construction
to be made for virtual braids. Such a construction leads to invariants of virtual
knots and links, yielding valuable information about the virtual category. In
Fig. 41 we illustrate the apparatus and relations that are needed to construct
a Markov trace on braids from an R-matrix in the classical case.

The illustration uses diagrammatic matrix notation. In this notation a ma-
trix or tensor is represented by a box or otherwise delineated polygon in the
plane with strands emanating from the box, indicating the indices of the ma-
trix. When a line from one diagrammatic matrix is tied with a line from another,
we see an internal edge in the graphical structure and this is interpreted as a
shared index in the matrix interpretation. Thus, at the matrix level one sums
over all possible indices that label an internal edge, and one takes the prod-
ucts of all the matrix entries concerned. This is an exact generalization of the
formula for matrix multiplication

(MN)ap = > MqaiNip

where summation is over all indices ¢ relevant to this matrix product.

One can conceptualize diagrammatic matrices by regarding the diagrams as
morphisms in a graphical category, and the intepretation as matrix multiplica-
tion as a functor to a linear algebraic category. The same remarks apply to the
well-known Einstein summation convention where we write

MaiNib

and interpret the repeated index as a summation over all values for i. Here the
algebraic notation M,;N;, is in an abstract tensor category of indexed algebra
with rules for handling repeated indices. For example, M,;Ny = My;Njp, so
long as j is also repeated and j denotes a letter distinct from a and b. The inter-
pretation as summation takes the abstract tensor category to a linear algebra
category. The diagrams are a generalization of the abstract tensor category. We
use this diagrammatic matrix algebra in our illustrations to show the transla-
tion from the category of link diagrams and virtual link diagrams to the matrix
algebraic formulas that can capture an invariant of virtual knots and links via
the Markov theorem. For example, see Fig. 41.
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Figure 41: R—matrix relations.
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The first diagram at the upper left denotes a matrix nj- where the indices are
designated by the strands emanating from the black disk that is the body of the
diagrammatic version of 7). Crossings are represented by the matrices R = (R}})
and R = R~'. These matrices must satisfy a braiding relation that corresponds
to the third Reidemeister move. At the matrix level this relation is called
the Yang-Baxter Equation. We have not illustrated this relation. The virtual
crossings are shown in Fig. 42. They are represented by a matrix V' that must
also satisfy the Yang-Baxter equation and the detour relations that generate
the virtual braid group. These matrices then generate a tensor representation
of the virtual braid group where a generator acting on the i-th and (i 4+ 1)-st
strands receives an R, R or V, according as it is a classical or virtual crossing,
and all the other strands receive an identity matrix. Given a virtual braid g,
let p(3) denote this representation applied to 3.

Now return to Fig. 41. Note that we define a trace function on braids by
the formula

tr(B) = trace(n®" p(B)).

Here trace denotes the usual trace of a matrix. This trace formula is indicated
diagrammatically by the figure in the box to its immediate left. In order for
tr(3) to be constructed (after normalization) as a virtual link invariant, we need:

1. tr(By) = tr(y8), for any braids 5 and #,

2. tr(f) should either be invariant or it should multiply by a constant under
stabilization moves and under-threaded moves.

In Fig. 41 we have indicated tr(5) to multiply by « under right positive
classical stabilization and by a~' under right negative classical stabilization. In
Fig. 42 we have indicated right virtual stabilization invariance. In Fig. 42 we
also illustrate the diagrammatics of a right under-threaded move. Note that
these stabilization equations all involve the matrix 7. Appropriate choices of
the solutions to the Yang-Baxter equation and the matrix 7 can, in principle,
lead to invariants of both classical and virtual knots and links. One obtains a
normalized invariant Invar(b) by the formula

Invar(b) = a~*®tr(b)

where w(b) is the sum of the signs of the exponents of the classical braid gener-
ators in an expression for the braid b.

One case is worth mentioning here explicitly. Suppose that n and R yield
an invariant of classical braids (of which there are many, including the Jones
polynomial and specializations of the homflypt polynomial). Then we can take
V (as a linear mapping) to be the permutation V(z ® y) = y ® x. Under these
conditions ¢r(b) will satisfy classical stabilization, but will not necessarily satisfy
virtual stabilization. We call such invariants virtual rotational invariants. They
are interesting in their own right. It is a subtle matter to obtain full virtual
invariants, but there are examples, including the Jones polynomial itself.
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Figure 42: Virtual R—matrix relations.
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Theorem 3 opens up yet another possibility to construct invariants of virtual
links using algebraic means. Namely, to study quotients of the virtual braid
group algebra and try to construct on them linear Markov—type traces. Then,
to apply appropriate normalizations yielding virtual link invariants. Taking the
lead of Jones’s construction [12] of the homflypt (2-variable Jones) polynomial
we define VH,,(q), the virtual Hecke algebra as the quotient of the virtual braid
group algebra Z[¢g*!']V B,, by factoring out the quadratic relations:

=(qg—1)oi+q.

Let g1,...,9n,v1,...,v, be the generators of VH,11(q). A virtual Markov
trace is defined to be a linear function ¢r on (J;-; VH,(¢) which supports the
real and virtual Markov properties. More precisely, we require the trace tr to
satisfy the rules:

1) tr(ab) = tr(ba),

2) tr(1) =1 for all VH,(q),

3) tr(agn) = ztr(a),

4) tr(av,) = str( )

5) tr(agy'vn—19; )—Ttr( );

6) tr(avnvn_19," vng i vn1vn) = ktr(a),

for a,b € VH,(q) and z,s,r, k independent variables in Z[¢*!]. Finally, we

normalize tr appropriately in order to obtain an invariant of virtual links.

We will pursue these matters of R-matrix invariants of virtual braids and
virtual Hecke algebras in a subsequent paper.
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